
Package: calibrar (via r-universe)
September 8, 2024

Version 0.9.0.9000

Title Automated Parameter Estimation for Complex Models

Description General optimisation and specific tools for the parameter
estimation (i.e. calibration) of complex models, including
stochastic ones. It implements generic functions that can be
used for fitting any type of models, especially those with
non-differentiable objective functions, with the same syntax as
'stats::optim()'. It supports multiple phases estimation
(sequential parameter masking), constrained optimization
(bounding box restrictions) and automatic parallel computation
of numerical gradients. Some common maximum likelihood
estimation methods and automated construction of the objective
function from simulated model outputs is provided. See
<https://roliveros-ramos.github.io/calibrar/> for more details.

Depends R (>= 3.5.0)

Imports BB, cmaes, DEoptim, dfoptim, GenSA, graphics, minqa, optimx,
foreach, lbfgsb3c, parallel, pso, rgenoud, soma, stats,
stringr, utils

Suggests deSolve, ibm, knitr, rmarkdown, testthat (>= 3.0.0)

License GPL-2

Encoding UTF-8

VignetteBuilder knitr

URL https://roliveros-ramos.github.io/calibrar/

BugReports https://github.com/roliveros-ramos/calibrar/issues

ByteCompile TRUE

RoxygenNote 7.2.3

Config/testthat/edition 3

Repository https://roliveros-ramos.r-universe.dev

RemoteUrl https://github.com/roliveros-ramos/calibrar

RemoteRef HEAD

RemoteSha ec0e8c1ad53a87621c88922c9f4e32e86ad38437

1

https://roliveros-ramos.github.io/calibrar/
https://roliveros-ramos.github.io/calibrar/
https://github.com/roliveros-ramos/calibrar/issues


2 calibrar-package

Contents
calibrar-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
.get_command_argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
.read_configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
ahres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
calibrar_demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
calibrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
calibration_data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
calibration_objFn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
calibration_setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
gaussian_kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
objFn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
optim2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
optimh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
sphereN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
spline_par . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Index 21

calibrar-package Automated Calibration for Complex Models

Description

Automated Calibration for Complex Models

Details

calibrar package: Automated Calibration for Complex Models

This package allows the parameter estimation (i.e. calibration) of complex models, including
stochastic ones. It implements generic functions that can be used for fitting any type of models,
especially those with non-differentiable objective functions, with the same syntax as base::optim.
It supports multiple phases estimation (sequential parameter masking), constrained optimization
(bounding box restrictions) and automatic parallel computation of numerical gradients. Some com-
mon maximum likelihood estimation methods and automated construction of the objective func-
tion from simulated model outputs is provided. See <https://roliveros-ramos.github.io/calibrar/>
for more details.

Author(s)

Ricardo Oliveros-Ramos Maintainer: Ricardo Oliveros-Ramos <ricardo.oliveros@gmail.com>

References

calibrar: an R package for the calibration of ecological models (Oliveros-Ramos and Shin 2014)



.get_command_argument 3

Examples

## Not run:
require(calibrar)
set.seed(880820)
path = NULL # NULL to use the current directory
# create the demonstration files
demo = calibrar_demo(model="PoissonMixedModel", L=5, T=100)
# get calibration information
calibrationInfo = calibration_setup(file=demo$path)
# get observed data
observed = calibration_data(setup=calibrationInfo, path=demo$path)
# read forcings for the model
forcing = read.csv(file.path(demo$path, "master", "environment.csv"), row.names=1)
# Defining 'runModel' function
runModel = function(par, forcing) {
output = calibrar:::.PoissonMixedModel(par=par, forcing=forcing)
# adding gamma parameters for penalties
output = c(output, list(gammas=par$gamma))
return(output)
}
# real parameters
cat("Real parameters used to simulate data\n")
print(demo$par)
# objective functions
obj = calibration_objFn(model=runModel, setup=calibrationInfo,

observed=observed, forcing=forcing)
cat("Starting calibration...\n")
control = list(weights=calibrationInfo$weights, maxit=3.6e5) # control parameters
cat("Running optimization algorithms\n", "\t", date(), "\n")
cat("Running optim AHR-ES\n")
ahr = calibrate(par=demo$guess, fn=obj, lower=demo$lower, upper=demo$upper, control=control)
summary(ahr)

## End(Not run)

.get_command_argument Get an specific argument from the command line

Description

Get an specific argument from the command line

Usage

.get_command_argument(
x,
argument,
prefix = "--",
default = FALSE,



4 .read_configuration

verbose = FALSE
)

Arguments

x The command line arguments, from x = commandArgs()

argument The name of the argument.

prefix The prefix to any argument of interest, the default is "–"

default Default value to return is argument is missing, default to FALSE.

verbose Boolean, if TRUE, shows a warning when the parameter is not found.

Value

The value of the argument, assumed to be followed after ’=’ or, TRUE if nothing but the argument
was found. If the argument is not found, FALSE is returned.

Examples

.get_command_argument(commandArgs(), "interactive")

.get_command_argument(commandArgs(), "RStudio")

.get_command_argument(commandArgs(), "RStudio", prefix="")

.get_command_argument(commandArgs(), "vanilla")

.get_command_argument("--control.file=baz.txt", "control.file")

.read_configuration Read a configuration file.

Description

File is expected to have lines of the form ’key SEP value’ where key is the name of the parameter,
SEP a separator (can be ’=’ ’,’, ’;’) and value the value of the parameter itself. The SEP for each
line is determined and parameters values are returned as a list.

Usage

.read_configuration(
file,
recursive = TRUE,
keep.names = TRUE,
conf.key = NULL,
...

)



ahres 5

Arguments

file File to read the configuration

recursive Should ’conf.key’ keys be read as additional configuration files? Default is
TRUE.

keep.names Should names be kept as they are? By default, are converted to lower case.

conf.key String indicating the leading key to find an additional configuration file.

... Additional arguments, not currently in use.

ahres Adaptative Hierarchical Recombination Evolutionary Strategy (AHR-
ES) for derivative-free and black-box optimization

Description

This function performs the optimization of a function using the Adaptative Hierarchical Recombi-
nation Evolutionary Strategy (AHR-ES, Oliveros & Shin, 2015).

Usage

ahres(
par,
fn,
gr = NULL,
...,
lower = -Inf,
upper = +Inf,
active = NULL,
control = list(),
hessian = FALSE,
parallel = FALSE

)

Arguments

par A numeric vector or list. The length of the par argument defines the number of
parameters to be estimated (i.e. the dimension of the problem).

fn The function to be minimized.

gr A function computing the gradient of fn. If NULL, a numerical approximation
of the gradient is used. It can be also a character specifying the method for
the computation of the numerical gradient: ’central’, ’forward’ (the default),
’backward’ or ’richardson’.

... Additional parameters to be passed to fn.

lower Lower threshold value(s) for parameters. One value or a vector of the same
length as par. If one value is provided, it is used for all parameters. NA means
-Inf. By default -Inf is used (unconstrained).



6 ahres

upper Upper threshold value(s) for parameters. One value or a vector of the same
length as par. If one value is provided, it is used for all parameters. NA means
Inf. By default Inf is used (unconstrained).

active Boolean vector of the same length as par, indicating if the parameter is used in
the optimization (TRUE) or hold at a fixed value (FALSE).

control Parameter for the control of the algorithm itself, see details.

hessian Logical. Should a numerically differentiated Hessian matrix be returned? Cur-
rently not implemented.

parallel Logical. Use parallel computation numerical of gradient?

Value

A list with components:

par The best set of parameters found.

value The value of fn corresponding to par.

counts A two-element integer vector giving the number of calls to fn and gr respectively. This ex-
cludes those calls needed to compute the Hessian, if requested, and any calls to fn to compute
a finite-difference approximation to the gradient.

convergence An integer code. 0 indicates successful completion.

message A character string giving any additional information returned by the optimizer, or NULL.

hessian Only if argument hessian is true. A symmetric matrix giving an estimate of the Hessian at
the solution found. Note that this is the Hessian of the unconstrained problem even if the box
constraints are active.

Author(s)

Ricardo Oliveros-Ramos

See Also

Other optimisers: calibrate(), optim2(), optimh()

Examples

## Not run: ahres(par=rep(1, 5), fn=sphereN)



calibrar_demo 7

calibrar_demo Demos for the calibrar package

Description

Creates demo files able to be processed for a full calibration using the calibrar package

Usage

calibrar_demo(path = NULL, model = NULL, ...)

Arguments

path Path to create the demo files

model Model to be used in the demo files, see details.

... Additional parameters to be used in the construction of the demo files.

Details

Current implemented models are:

PoissonMixedModel Poisson Autoregressive Mixed model for the dynamics of a population in
different sites:

log(µi,t+1) = log(µi,t) + α+ βXi,t + γt

where µi,t is the size of the population in site i at year t, Xi,t is the value of an environmental
variable in site i at year t. The parameters to estimate were α, β, and γt, the random effects
for each year, γt ∼ N(0, σ2), and the initial population at each site µi,0. We assumed that the
observations Ni,t follow a Poisson distribution with mean µi,t.

PredatorPrey Lotka Volterra Predator-Prey model. The model is defined by a system of ordinary
differential equations for the abundance of prey $N$ and predator $P$:

dN

dt
= rN(1−N/K)− αNP

dP

dt
= −lP + γαNP

The parameters to estimate are the prey’s growth rate r, the predator’s mortality rate l, the
carrying capacity of the prey K and α and γ for the predation interaction. Uses deSolve
package for numerical solution of the ODE system.

SIR Susceptible-Infected-Recovered epidemiological model. The model is defined by a system of
ordinary differential equations for the number of susceptible $S$, infected $I$ and recovered
$R$ individuals:

dS

dt
= −βSI/N

dI

dt
= βSI/N − γI



8 calibrar_demo

dR

dt
= γI

The parameters to estimate are the average number of contacts per person per time β and
the instant probability of an infectious individual recovering γ. Uses deSolve package for
numerical solution of the ODE system.

IBMLotkaVolterra Stochastic Individual Based Model for Lotka-Volterra model. Uses ibm pack-
age for the simulation.

Value

A list with the following elements:

path Path were the files were saved

par Real value of the parameters used in the demo

setup Path to the calibration setup file

guess Values to be provided as initial guess to the calibrate function

lower Values to be provided as lower bounds to the calibrate function

upper Values to be provided as upper bounds to the calibrate function

phase Values to be provided as phases to the calibrate function

constants Constants used in the demo, any other variable not listed here.

value NA, set for compatibility with summary methods.

time NA, set for compatibility with summary methods.

counts NA, set for compatibility with summary methods.

Author(s)

Ricardo Oliveros–Ramos

References

Oliveros-Ramos and Shin (2014)

Examples

## Not run:

summary(ahr)
set.seed(880820)
path = NULL # NULL to use the current directory
# create the demonstration files
demo = calibrar_demo(path=path, model="PredatorPrey", T=100)
# get calibration information
calibration_settings = calibration_setup(file = demo$setup)
# get observed data
observed = calibration_data(setup = calibration_settings, path=demo$path)
# Defining 'run_model' function
run_model = calibrar:::.PredatorPreyModel



calibrate 9

# real parameters
cat("Real parameters used to simulate data\n")
print(unlist(demo$par)) # parameters are in a list
# objective functions
obj = calibration_objFn(model=run_model, setup=calibration_settings, observed=observed, T=demo$T)
obj2 = calibration_objFn(model=run_model, setup=calibration_settings, observed=observed,
T=demo$T, aggregate=TRUE)
cat("Starting calibration...\n")
cat("Running optimization algorithms\n", "\t")
cat("Running optim AHR-ES\n")
ahr = calibrate(par=demo$guess, fn=obj, lower=demo$lower, upper=demo$upper, phases=demo$phase)
summary(ahr)

## End(Not run)

calibrate Sequential parameter estimation for the calibration of complex models

Description

This function performs the optimization of a function, possibly in sequential phases of increasing
complexity, and it is designed for the calibration of a model, by minimizing the error function fn
associated to it.

Usage

calibrate(
par,
fn,
gr,
...,
method,
lower,
upper,
phases,
control,
hessian,
replicates,
parallel

)

## Default S3 method:
calibrate(
par,
fn,
gr = NULL,
...,
method = NULL,



10 calibrate

lower = NULL,
upper = NULL,
phases = NULL,
control = list(),
hessian = FALSE,
replicates = 1,
parallel = FALSE

)

Arguments

par A numeric vector or list. The length of the par argument defines the number of
parameters to be estimated (i.e. the dimension of the problem).

fn The function to be minimized.
gr A function computing the gradient of fn. If NULL, a numerical approximation

of the gradient is used. It can be also a character specifying the method for
the computation of the numerical gradient: ’central’, ’forward’ (the default),
’backward’ or ’richardson’.

... Additional parameters to be passed to fn.
method The optimization method to be used. The default method is the AHR-ES (Adap-

tative Hierarchical Recombination Evolutionary Strategy, Oliveros-Ramos &
Shin, 2016). See details for the methods available.

lower Lower threshold value(s) for parameters. One value or a vector of the same
length as par. If one value is provided, it is used for all parameters. NA means
-Inf. By default -Inf is used (unconstrained).

upper Upper threshold value(s) for parameters. One value or a vector of the same
length as par. If one value is provided, it is used for all parameters. NA means
Inf. By default Inf is used (unconstrained).

phases An optional vector of the same length as par, indicating the phase at which
each parameter becomes active. If omitted, default value is 1 for all parameters,
performing a single optimization.

control Parameter for the control of the algorithm itself, see details.
hessian Logical. Should a numerically differentiated Hessian matrix be returned? Cur-

rently not implemented.
replicates The number of replicates for the evaluation of fn. The default value is 1. A

value greater than 1 is only useful for stochastic functions.
parallel Logical. Use parallel computation numerical of gradient?

Details

In the control list, aggFn is a function to aggregate fn to a scalar value if the returned value is a
vector. Some optimization algorithm can exploite the additional information provided by a vectorial
output from fn.

Author(s)

Ricardo Oliveros-Ramos



calibration_data 11

See Also

Other optimisers: ahres(), optim2(), optimh()

Examples

calibrate(par=rep(NA, 5), fn=sphereN)
## Not run:
calibrate(par=rep(NA, 5), fn=sphereN, replicates=3)
calibrate(par=rep(0.5, 5), fn=sphereN, replicates=3, lower=-5, upper=5)
calibrate(par=rep(0.5, 5), fn=sphereN, replicates=3, lower=-5, upper=5, phases=c(1,1,1,2,3))
calibrate(par=rep(0.5, 5), fn=sphereN, replicates=c(1,1,4), lower=-5, upper=5, phases=c(1,1,1,2,3))

## End(Not run)

calibration_data Get observed data for the calibration of a model

Description

Create a list with the observed data with the information provided by its main argument.

Usage

calibration_data(setup, path = ".", file = NULL, verbose = TRUE, ...)

Arguments

setup A data.frame with the information about the calibration, normally created with
the calibration_setup function. See details.

path Path to the directory to look up for the data. Paths in setup are considered rela-
tives to this path.

file Optional file to save the created object (as an ’rds’ file.)

verbose If TRUE, detailed messages of the process are printed.

... Additional arguments to read.csv function to read the data files.

Value

A list with the observed data needed for a calibration, to be used in combination with the calibration_objFn.

Author(s)

Ricardo Oliveros-Ramos

See Also

calibration_objFn, calibration_setup.



12 calibration_objFn

calibration_objFn Create an objective function to be used with optimization routines

Description

Create a new function, to be used as the objective function in the calibration, given a function to run
the model within R, observed data and information about the comparison with data.

Usage

calibration_objFn(model, setup, observed, aggFn = NULL, aggregate = FALSE, ...)

Arguments

model Function to run the model and produce a list of outputs.

setup A data.frame with the information about the calibration, normally created with
the calibration_setup function. See details.

observed A list of the observed variables created with the function calibration_data

aggFn A function to aggregate fn to a scalar value if the returned value is a vector.
Some optimization algorithm can explote the additional information provided
by a vectorial output from fn

aggregate boolean, if TRUE, a scalar value is returned using the aggFn.

... More arguments passed to the model function.

Value

A function, integrating the simulation of the model and the comparison with observed data.

Author(s)

Ricardo Oliveros-Ramos

See Also

calibration_data, calibration_setup.



calibration_setup 13

calibration_setup Get information to run a calibration using the calibrar package.

Description

A wrapper for read.csv checking column names and data types for the table with the calibration
information.

Usage

calibration_setup(file, control = list(), ...)

Arguments

file The file with the calibration information, see details.

control Control arguments for generating the setup. See details.

... Additional arguments to read.csv function.

Value

A data.frame with the information for the calibration of a model, to be used with the calibration_objFn
and calibration_data.

Author(s)

Ricardo Oliveros-Ramos

See Also

calibration_objFn, calibration_data.

gaussian_kernel Calculate a discretization of the 2D Gaussian Kernel

Description

Calculate a discretization of the 2D Gaussian Kernel

Usage

gaussian_kernel(par, lower, upper, n = 10, checkSymmetry = TRUE, ...)



14 gradient

Arguments

par A list, including the mean and covariance matrix.

lower A vector, indicating the lower bound for the calculation.

upper A vector, indicating the upper bound for the calculation.

n The number of cells for each dimension, can be one or two numbers.

checkSymmetry TRUE by default, checks if the covariance matrix is symmetric.

... Additional arguments, currently not used.

Value

A list, with ’x’, ’y’ and ’z’ components.

gradient Numerical computation of the gradient, with parallel capabilities

Description

This function calculates the gradient of a function, numerically, including the possibility of doing it
in parallel.

Usage

gradient(fn, x, method, control, parallel, ...)

Arguments

fn The function to calculate the gradient.

x The value to compute the gradient at.

method The method used. Currently implemented: central, backward, forward and
Richardson. See details.

control A list of control arguments.

parallel Boolean, should numerical derivatives be calculated in parallel?

... Additional arguments to be passed to fn.

Value

The gradient of fn at x.

Examples

gradient(fn=function(x) sum(x^3), x=0)



objFn 15

objFn Calcuted error measure between observed and simulated data

Description

Calcuted error measure between observed and simulated data

Usage

objFn(obs, sim, FUN, ...)

fitness(obs, sim, FUN, ...)

Arguments

obs observed data as expected by FUN.

sim simulated data matching ’obs’

FUN the error function. Current accepted values area: ’norm2’, ’lnorm2’, ’lnorm3’,
’multinomial’, ’pois’, ’penalty0’, ’penalty1’, ’penalty2’ and ’normp’.

... Additional arguments to FUN

Value

the value of FUN(obs, sim, ...)

optim2 General-purpose optimization with parallel numerical gradient com-
putation

Description

General-purpose optimization with parallel numerical gradient computation

Usage

optim2(
par,
fn,
gr = NULL,
...,
method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent", "nlm", "nlminb",

"Rcgmin", "Rvmmin", "hjn", "spg", "LBFGSB3", "AHR-ES"),
lower = -Inf,
upper = +Inf,
active = NULL,



16 optim2

control = list(),
hessian = FALSE,
parallel = FALSE

)

Arguments

par A numeric vector or list. The length of the par argument defines the number of
parameters to be estimated (i.e. the dimension of the problem).

fn The function to be minimized.

gr A function computing the gradient of fn. If NULL, a numerical approximation
of the gradient is used. It can be also a character specifying the method for
the computation of the numerical gradient: ’central’, ’forward’ (the default),
’backward’ or ’richardson’.

... Additional parameters to be passed to fn.

method The optimization method to be used. The default method is the AHR-ES (Adap-
tative Hierarchical Recombination Evolutionary Strategy, Oliveros-Ramos &
Shin, 2016). See details for the methods available.

lower Lower threshold value(s) for parameters. One value or a vector of the same
length as par. If one value is provided, it is used for all parameters. NA means
-Inf. By default -Inf is used (unconstrained).

upper Upper threshold value(s) for parameters. One value or a vector of the same
length as par. If one value is provided, it is used for all parameters. NA means
Inf. By default Inf is used (unconstrained).

active Boolean vector of the same length as par, indicating if the parameter is used in
the optimization (TRUE) or hold at a fixed value (FALSE).

control Parameter for the control of the algorithm itself, see details.

hessian Logical. Should a numerically differentiated Hessian matrix be returned? Cur-
rently not implemented.

parallel Logical. Use parallel computation numerical of gradient?

Value

A list with components:

par The best set of parameters found.

value The value of fn corresponding to par.

counts A two-element integer vector giving the number of calls to fn and gr respectively. This ex-
cludes those calls needed to compute the Hessian, if requested, and any calls to fn to compute
a finite-difference approximation to the gradient.

convergence An integer code. 0 indicates successful completion.

message A character string giving any additional information returned by the optimizer, or NULL.

hessian Only if argument hessian is true. A symmetric matrix giving an estimate of the Hessian at
the solution found. Note that this is the Hessian of the unconstrained problem even if the box
constraints are active.



optimh 17

Author(s)

Ricardo Oliveros-Ramos

See Also

Other optimisers: ahres(), calibrate(), optimh()

Examples

optim2(par=rep(NA, 5), fn=sphereN)

optimh General-purpose optimization using heuristic algorithms

Description

General-purpose optimization using heuristic algorithms

Usage

optimh(
par,
fn,
gr = NULL,
...,
method = c("AHR-ES", "Nelder-Mead", "SANN", "hjn", "bobyqa", "CMA-ES", "genSA", "DE",

"soma", "genoud", "PSO", "hybridPSO", "mads", "hjk", "hjkb", "nmk", "nmkb"),
lower = -Inf,
upper = +Inf,
active = NULL,
control = list(),
hessian = FALSE,
parallel = FALSE

)

Arguments

par A numeric vector or list. The length of the par argument defines the number of
parameters to be estimated (i.e. the dimension of the problem).

fn The function to be minimized.

gr Function to compute the gradient of fn. Ignored by most methods, added for
consistency with other optimization functions.

... Additional parameters to be passed to fn.

method The optimization method to be used. The default method is the AHR-ES (Adap-
tative Hierarchical Recombination Evolutionary Strategy, Oliveros-Ramos &
Shin, 2016). See details for the methods available.



18 optimh

lower Lower threshold value(s) for parameters. One value or a vector of the same
length as par. If one value is provided, it is used for all parameters. NA means
-Inf. By default -Inf is used (unconstrained).

upper Upper threshold value(s) for parameters. One value or a vector of the same
length as par. If one value is provided, it is used for all parameters. NA means
Inf. By default Inf is used (unconstrained).

active Boolean vector of the same length as par, indicating if the parameter is used in
the optimization (TRUE) or hold at a fixed value (FALSE).

control Parameter for the control of the algorithm itself, see details.

hessian Logical. Should a numerically differentiated Hessian matrix be returned? Cur-
rently not implemented.

parallel Logical. Use parallel computation numerical of gradient?

Value

A list with components:

par The best set of parameters found.

value The value of fn corresponding to par.

counts A two-element integer vector giving the number of calls to fn and gr respectively. This ex-
cludes those calls needed to compute the Hessian, if requested, and any calls to fn to compute
a finite-difference approximation to the gradient.

convergence An integer code. 0 indicates successful completion.

message A character string giving any additional information returned by the optimizer, or NULL.

hessian Only if argument hessian is true. A symmetric matrix giving an estimate of the Hessian at
the solution found. Note that this is the Hessian of the unconstrained problem even if the box
constraints are active.

Author(s)

Ricardo Oliveros-Ramos

See Also

Other optimisers: ahres(), calibrate(), optim2()

Examples

optim2(par=rep(NA, 5), fn=sphereN)



sphereN 19

sphereN Sphere function with random noise

Description

This function calculates the Euclidian distance from a point to the origin after a random displace-
ment of its position.

Usage

sphereN(x, sd = 0.1, aggregate = TRUE)

Arguments

x The coordinates of the point

sd The standard deviation of the noise to be added to the position of x, a normal
distribution with mean zero is used.

aggregate If aggregate is TRUE the distance is returned, otherwise the size of the projec-
tion of the distance among each axis.

Value

The distance from the point x to the origin after a random displacement.

Author(s)

Ricardo Oliveros–Ramos

Examples

sphereN(rep(0, 10))

spline_par Predict time-varying parameters using splines.

Description

Predict time-varying parameters using splines.

Usage

spline_par(par, n, knots = NULL, periodic = FALSE, period = NULL)



20 spline_par

Arguments

par Values at knots

n Number of points. Time (independent variable) is assumed to be between 0 and
n with length(par) equidistant points (including 0 and n).

knots Position of knots. Default, is length(x) equidistant points between 0 and 1. Al-
ways are re-scaled to 0 to 1.

periodic boolean, is the spline periodic?

period If periodic is TRUE, it specify the time period.

Value

A list with the interpolates values as ’x’ and ’time’.



Index

∗ calibration
calibrar-package, 2
calibrar_demo, 7

∗ demo
calibrar_demo, 7

∗ optimisers
ahres, 5
calibrate, 9
optim2, 15
optimh, 17

∗ random
sphereN, 19

∗ stochastic
sphereN, 19

.get_command_argument, 3

.read_configuration, 4

ahres, 5, 11, 17, 18

calibrar (calibrar-package), 2
calibrar-package, 2
calibrar_demo, 7
calibrate, 6, 9, 17, 18
calibration_data, 11, 12, 13
calibration_objFn, 11, 12, 13
calibration_setup, 11, 12, 13

fitness (objFn), 15

gaussian_kernel, 13
gradient, 14

objFn, 15
optim2, 6, 11, 15, 18
optimh, 6, 11, 17, 17

sphereN, 19
spline_par, 19

21


	calibrar-package
	.get_command_argument
	.read_configuration
	ahres
	calibrar_demo
	calibrate
	calibration_data
	calibration_objFn
	calibration_setup
	gaussian_kernel
	gradient
	objFn
	optim2
	optimh
	sphereN
	spline_par
	Index

